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Abstract:We consider non-autonomous multivariable linear systems governed by the equationu̇ = A(t)u with the
matrixA(t) satisfying the generalized Lipschitz condition‖A(t)−A(τ)‖ ≤ a(|t− τ |) (t, τ ≥ 0), wherea(t) is a
positive function. Explicit sharp stability conditions are derived. In the appropriate situations our results generalize
and improve the traditional freezing method. An illustrative example is presented.
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1 Intr oduction and statement of the
main result

Let Cn be the complex n-dimensional Euclidean
space with a scalar product(., .), the Euclidean norm
‖.‖ =

√
(., .) andthe unit matrixI. For a linear oper-

atorA in Cn (matrix),‖A‖ = supx∈Cn ‖Ax‖/‖x‖ is
the spectral(operator) norm.

The purpose of this note is to suggest new suffi-
cient stability conditions for a slowly varying in time
system described by the equation

u̇(t) = A(t)u(t) (t ≥ 0; u̇(t) = du(t)/dt), (1.1)

whereA(t) is a variablen×n matrix [0,∞) satisfying
the generalized Lipschitz condition

‖A(t) − A(τ)‖ ≤ a(|t − τ |) (t, τ ≥ 0). (1.2)

wherea(t) is a positive piece-wise continuous func-
tion defined on[0,∞).

The problem of stability analysis of linear sys-
tems continues to attract the attention of many special-
ists despite its long history. It is still one of the most
burning problems of control theory, because of the ab-
sence of its complete solution. One of the main meth-
ods for the stability analysis of systems with slowly
varying matrices is the freezing method [1, 3], [6]-[9],
[11, 12, 4]. In particular, in the interesting recent pa-
per [7] a numerical method is suggested.

The main features of the present note are the fol-
lowing: in the framework of the traditional freezing
approach it is assumed thatA(t) either differentiable
with small derivative or satisfies the Lipschitz condi-
tion

‖A(t)−A(τ)‖ ≤ q0|t−τ | (q0 = const ≥ 0; t, τ ≥ 0).

.

So condition (1.2) holds in the special case
a(t) := q0|t|. Thuscondition (1.2) enables us to gen-
eralize the traditional freezing method and improve it
in the appropriate situation.

A solution to (1.1) for a givenu0 ∈ Cn is a
function u : [0,∞) → Cn having at each point
t ≥ 0 a bounded derivative and satisfying (1.1) for all
t > 0 andu(0) = u0. Theexistence and uniqueness
of solutions under consideration are obvious. Equa-
tion (1.1) is said to be exponentially stable, if there
are positive constantsM and ε, such that‖u(t)‖ ≤
Mexp [−εt]‖u(0)‖ (t ≥ 0) for any solutionu(t) of
(1.1).

In addition to (1.2) suppose that there is a positive
integrable on[0,∞) function p(t) independent ofs
integrable and uniformly bounded on[0,∞), such that

‖ exp[A(s)t]‖ ≤ p(t) (t, s ≥ 0). (1.3)

Now we are in a position to formulate the main
result of the paper.

Theorem 1 Let the conditions (1.2),(1.3) and

ζ0 :=
∫ ∞

0
a(s)p(s)ds < 1 (1.4)

hold. Then equation (1.1) is exponentially stable.

This theorem is proved in the next section. Theorem
1.1 is sharp in the following sense: ifA(t) is constant,
thena(t) = 0 and condition (1.4) automatically holds
for any exponentially stable equation.
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To apply Theorem 1.1 to concrete systems intro-
duce the quantity

g(A) = (N2
2 (A) −

n∑

k=1

|λk(A)|2)1/2 (A ∈ Cn×n),

where N2(A) is the Hilbert-Schmidt (Frobenius)
norm ofA: N2(A) =

√
trace AA∗, A∗ is theadjoint

operator,λk(A) (k = 1, ..., n) are the eigenvalues
with their multiplicities. The following relations are
checked in cf. [5, Section 3.1]:

g2(A) ≤ N2
2 (A) − |Trace A2|, g(A)

≤
1
√

2
N2(A − A∗)

andg(eiaA + zIH) = g(A) (a ∈ R, z ∈ C); if A is
a normal matrix:A∗A = AA∗, theng(A) = 0. If A1

andA2 are commutingmatrices, theng(A1 + A2) ≤
g(A1)+g(A2). In addition, by the inequality between
the geometric and arithmetic mean values,

(
1
n

n∑

k=1

|λk(A)|2)n ≥ (
n∏

k=1

|λk(A)|)2.

Hence,g2(A) ≤ N2
2 (A) − n(det A)2/n. Dueto Ex-

ample 3.2 [5]

‖eAt‖ ≤ eα(A)t
n−1∑

k=0

tkgk(A)
(k!)3/2

(t ≥ 0),

whereα(A) = maxk Re λk(A). Assumethat

g0 := sup g(A(t)) < ∞ (1.5)

and
α0 := sup α(A(t)) < 0. (1.6)

Then (1.3) holds withp(t) = p̂(t), where

p̂(t) := eα0t
n−1∑

k=0

tkgk
0

(k!)3/2
(t ≥ 0).

Now Theorem 1.1 implies

Corollary 2 Let the conditions (1.2),(1.5), (1.6) and

ζ̂ :=
∫ ∞

0
a(s)p̂(s)ds < 1 (1.7)

hold. Then (1.1) is exponentially stable.

2 Proof of Theorem 1.1

Weneed the following result.

Lemma 3 Let conditions (1.2)-(1.4) hold. Then any
solutionu(t) of (1.1) satisfies the inequality

sup
t≥0

‖u(t)‖ ≤
pM

1 − ζ0
‖u(0)‖,

wherepM = supt p(t).

Proof: Rewrite (1.1) as

du(t)
dt

= A(τ)u(t) + [A(t) − A(τ)]u(t)

with an arbitrary fixedτ ≥ 0. So (1.1) is equivalent to
the equation

u(t) = exp[A(τ)t]u(0)

+
∫ t

0
exp[A(τ)(t − s)][A(s) − A(τ)]u(s)ds.

Hence,

‖u(t)‖ ≤ ‖ exp[A(τ)t]‖‖u(0)‖

+
∫ t

0
‖ exp[A(τ)(t − s)]‖‖A(s) − A(τ)‖‖u(s)‖ds.

According to(1.2) and (1.3),

‖u(t)‖ ≤ p(t)‖u(0)‖+
∫ t

0
p(t−s)a(s−τ)‖u(s)‖ds.

Takingτ = t, we obtain

‖u(t)‖ ≤ p(t)‖u(0)‖+
∫ t

0
p(t− s)a(t− s)‖u(s)‖ds

and therefore,

‖u(t)‖ ≤ p(t)‖u(0)‖+
∫ t

0
p(t1)a(t1)‖u(t− t1)‖dt1.

Hence forany positive finiteT ,

sup
t≤T

‖u(t)‖ ≤ pM‖u(0)‖+sup
t≤T

‖u(t)‖
∫ T

0
p(t1)a(t1)dt1

≤ pM‖u(0)‖ + sup
t≤T

‖u(t)‖
∫ ∞

0
p(t1)a(t1)dt1

= pM‖u(0)‖ + sup
t≤T

‖u(t)‖ζ0.

Accordingto (1.4) we get

sup
t≤T

‖u(t)‖ ≤ pM‖u(0)‖(1 − ζ0)
−1
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Extending thisresult to all T ≥ 0 we prove the
lemma. Q.E.D.

Proof of Theorem 1.1:By the substitution

u(t) = uε(t)e
−εt (2.1)

with anε > 0 into (1.1), we obtain the equation

duε(t)/dt = (εI + A(t))uε(t). (2.2)

Taking ε small enough and applying Lemma
2.1 to equation (2.2) we can assert that
‖uε(t)‖ ≤ const‖u(0)‖. Hence due to (2.1) we
arrive at the required result. Q.E.D.

3 Example

Consider equation(1.1), taking

A(t) =

(
−1 b sin(ωt)

−b sin(ωt) −1

)

(3.1)

with positive constantsb andω. In this case one can
apply various methods, for example the Wazewsky in-
equality, but to compare our results with [7] we apply
Theorem 1.1. We have

‖A(t) − A(s)‖ ≤ b| sin(ωt) − sin(ωs)| (t, s ≥ 0).
(3.2)

Since

sin x−sin y = 2 cos
1
2
(x+y) sin

1
2
(x−y) (x, y ∈ R),

we obtain

‖A(t) − A(s)‖ ≤ 2b| sin(
ω(t − s)

2
)|.

So a(t) = 2b| sin(ωt/2)|. Simple calculations show
that

λ1,2(A(t)) = −1 ± ib sin(ωt)

and thereforeα(A(t)) ≡ −1. In addition,g(A(t))≡
0, sinceA(t) is normal. Sop(t) = e−t and

ζ̂ = 2b

∫ ∞

0
e−t| sin(ωt/2)|dt

= (4b/ω)
∫ ∞

0
e−2x/ω| sin x|dx.

Takingc = 2/ω we can write

∫ ∞

0
e−cx| sin x|dx =

∞∑

k=0

∫ π2(k+1)

2πk
e−cx| sin x|dx.

But

∫ π2(k+1)

2πk
e−cx| sin x|dx = e−c2πk

∫ 2π

0
e−cy| sin y|dy

= e−c2πk(1 + e−cπ)
∫ π

0
e−cy sin ydy

= −e−c2πk(1 + e−cπ)
1

(1 + c2)
e−cx cos x|πx=0

= e−c2πk 1
(1 + c2)

(e−cπ + 1)

1
(1 + c2)

(e−cπ + 1).

Hence,

∫ ∞

0
e−cx| sin x|dx =

1
(1 + c2)

(e−cπ + 1)
∞∑

k=0

e−c2πk

=
(e−cπ + 1)

(1 − e−2cπ)(1 + c2)
.

Due toCorollary 1.2 the considered equation is expo-
nentially stable, provided

ζ̂ =
4bω(e−2π/ω + 1)

(1 − e−4π/ω)(4 + ω2)
< 1. (3.3)

For instance takeω = 1. Then (3.3) holds, provided

b < 2.4 <
5(1 − e−4π)
e−2π + 1

(3.4)

The traditional freezing method can be applied if in-
stead of (3.2) we take into account that under consid-
eration

‖A(t) − A(s)‖ ≤ bω|t − s|

Soa(t) = bω|t| and according to Corollary 1.2 in this
case withω = 1 the stability condition is provided by
the inequality

b

∫ ∞

0
e−ttdt = b < 1.

So (3.4) is considerably better than this condition.
This example shows that the application of Theo-

rem 1.1 to equations with matrices containing two and
more parameters requires simpler calculations than
the method suggested in [7] but Theorem 1.1, in con-
trast to [7], requires the point-wise Hurwitzness of
matrixA(t).
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