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Abstract: We consider non-autonomous multivariable linear systems governed by the equatidrit)u with the
matrix A(t) satisfying the generalized Lipschitz conditipA(¢) — A(7)|| < a(|t — 7|) (t,7 > 0), wherea(t) is a

positive function. Explicit sharp stability conditions are derived. In the appropriate situations our results generalize

and improve the traditional freezing method. An illustrative example is presented.
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Intr oduction and statement of the
main result

1

Let C" be the complex n-dimensional Euclidean
space with a scalar produgt .), the Euclidean norm
Il = V/(.,.) andthe unit matrixI. For a linear oper-
ator A in C™ (matrix), || A|| = sup,ccn || Az||/||x] is
the spectra{operator) norm.

The purpose of this note is to suggest new suffi-
cient stability conditions for a slowly varying in time
system described by the equation

a(t) = A(t)u(t) (t>0; a(t) = du(t)/dt), (1.1)

whereA(t) is a variablen x n matrix [0, oo) satisfying
the generalized Lipschitz condition

[A(#) = ATl < a(lt —7]) (t,7 > 0).

wherea(t) is a positive piece-wise continuous func-
tion defined orj0, o).

The problem of stability analysis of linear sys-
tems continues to attract the attention of many special-
ists despite its long history. It is still one of the most
burning problems of control theory, because of the ab-
sence of its complete solution. One of the main meth-
ods for the stability analysis of systems with slowly
varying matrices is the freezing method [1, 3], [6]-[9],
[11, 12, 4]. In particular, in the interesting recent pa-
per [7] a numerical method is suggested.

The main features of the present note are the fol-
lowing: in the framework of the traditional freezing
approach it is assumed tha(¢) either differentiable
with small derivative or satisfies the Lipschitz condi-
tion

[A()—A(T)|| < qolt—7] (g0 = const = 0; t,7 = 0).

(1.2)
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So condition (1.2) holds in the special case
a(t) := qo|t|. Thuscondition (1.2) enables us to gen-
eralize the traditional freezing method and improve it
in the appropriate situation.

A solution to (1.1) for a givernuy € C" is a
function v : [0,00) — C”" having at each point
t > 0 a bounded derivative and satisfying (1.1) for all
t > 0 andu(0) = ug. Theexistence and uniqueness
of solutions under consideration are obvious. Equa-
tion (1.1) is said to be exponentially stable, if there
are positive constantd/ ande, such thatj|u(t)|| <
Mexp [—et]||u(0)| (¢t > 0) for any solutionu(t) of
(1.12).

In addition to (1.2) suppose that there is a positive
integrable on|0, oo) function p(¢) independent ok
integrable and uniformly bounded @h co), such that

|| exp[A(s)t]|| < p(t) (t,s =0). (1.3)

Now we are in a position to formulate the main

result of the paper.

Theorem 1 Let the conditions (1.2),(1.3) and

Co = /OOO a(s)p(s)ds < 1 (1.4)

hold. Then equation (1.1) is exponentially stable.

This theorem is proved in the next section. Theorem
1.1is sharp in the following sense:Af(t) is constant,
thena(t) = 0 and condition (1.4) automatically holds
for any exponentially stable equation.
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To apply Theorem 1.1 to concrete systems intro-

duce the quantity

9(A) = )12

Z Ak (A

where Ny(A) is the Hilbert-Schmidt (Frobenius)
norm of A: Na(A) = Virace AA*, A* is theadjoint
operator,\;(4) (k = 1,...,n) are the eigenvalues
with their multiplicities. The following relations are
checked in cf. [5, Section 3.1]:

A c Can)’

9*(A) < N3(A) — |Trace A%, g(A)

< 12N2(A —A")

andg(e®®A + zIg) = g(A) (a € R,z € C); if Ais

a normal matrix:A*A = AA*, theng(A) = 0. If 4;
and A, are commutingnatrices, thery(A; + Az) <
g(A1)+g(A2). Inaddition, by the inequality between
the geometric and arithmetic mean values,

(S AP > (T Ae(4))?
k=1 k=1

Hence,g?(A) < N3(A) — n(det A)*>™. Dueto Ex-
ample 3.2 [5]

n—1 ,k k
At a(A)t t"g"(A)
el < 03 e

(tZO),

wherea(A) = maxy Re \;(A). Assumethat

g0 := sup g(A(t)) < oo (1.5)

and
ap :=sup a(A(t)) < 0.

Then (1.3) holds withp(t) =

(1.6)

p(t), where

nltk

— eaot §

> 0).

3/2

Now Theorem 1.1 implies

Corollary 2 Let the conditions (1.2),(1.5), (1.6) and

- / s)ds < 1 (1.7)
hold. Then (1.1) is exponentially stable.
E-ISSN: 2224-2678

26

Michael Gil

2 Proof of Theorem 1.1

We need the following result.

Lemma 3 Let conditions (1.2)-(1.4) hold. Then any
solutionu(t) of (1.1) satisfies the inequality

bm

(o)1

sup [[u(t)]| <
>0

wherepy; = sup, p(t).
Proof: Rewrite (1.1) as

du(t)
dt

with an arbitrary fixed- > 0. So (1.1) is equivalent to
the equation

= A(T)u(t) + [A(t) = A(T)]u(?)

u(t) = exp[A(7)t]u(0)

+/Ot exp[A(r)(

Hence,

t — s)][A(s) — A(7)]u(s)ds.

[u()]| < || exp[A(T)2][[[[u(0)]]

+ [eslame - llAG) -
According to(1.2) and (1.3),

A(T)|[[[u(s)l|ds.

lu(@)] < p(t)\U(O)H+/0tp(t—8)a(s—T)IIU(S)HdS-

TakingT = t, we obtain

[u@®)]l < p(®)[lw(O)]| + /Otp(t —s)a(t — s)l[u(s)l|ds

and therefore,

IOl < 2O+ [ pler)a) e )l

Hence forany positive finitel’,

T
sup [[u(t)]] SpMIIU@)IHSUPIIU(ﬂH/ p(t1)a(tr)dt
t<T t<T 0

< pur[|[u(0)]] 4 sup [Ju() / p(t1)a(ty)dty
t<T 0
= pur||u(0)[| + sup [[u(t)||¢o-
t<T
Accordingto (1.4) we get
0)[(1 — ¢o) ™

sup [lu(t)|| < parflu
t<T
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Extending thisresult to allT” > 0 we prove the
lemma. Q.E.D.

Proof of Theorem 1.1:By the substitution
u(t) = uc(t)e (2.1)

with ane > 0 into (1.1), we obtain the equation

(el + A(t))ue(t).

Taking ¢ small enough and applying Lemma

2.1 to equation (2.2) we can assert that
lluec(t)]| < const||u(0)]]. Hence due to (2.1) we

arrive at the required result. Q.E.D.

duc(t)/dt = (2.2)

3 Example

Consider equatiofil.1), taking

(o )

with positive constant$ andw. In this case one can
apply various methods, for example the Wazewsky in-
equality, but to compare our results with [7] we apply
Theorem 1.1. We have

—1
—b sin(wt)

b sin(wt)

A(t) "

|A(t) — A(s)]| < b|sin(wt) — sin(ws)| (t,s > 0).
(3.2)
Since
. . o1
sinz—siny = 2 cos 5(:E+y) sin §(x—y) (z,y € R),
we obtain
JA(t) ~ A < 20D

Soa(t) = 2b|sin(wt/2)|. Simple calculations show
that
A2(A(t)) = —1 £ ib sin(wt)

and thereforev(A(t)) = —1. In addition,g(A(t))=
0, sinceA(t) is normal. So(t) = e~ and

(= [

— (abfe) [ e

Takingc = 2/w we can write

72(k+1)
/ T sinx|dx = Z/ e “|sinz|dz.
0
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~!|sin(wt/2)|dt

e~ 2%/ sin z|dx.
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But

72(k-+1)
/27rk

— efc2rrk(1 _i_efcw)/

0

2m
e “|sinz|dr = 6_027”“/ e~ Y| siny|dy
0

s

e~ %Y sin ydy

= —67027%(1 +e ) e “cosx|i_g

(1+¢?)
1
—c2rk —cr
—e € (1+02)( “T4+1)
1 _
(1 + 02) (6 cm + 1)
Hence,
/OO e “|sinz|dx = ! e " Z e~ o2k
0 (1 +c )
(e—cw _|_ 1)

T (l—e (14 2)
Due toCorollary 1.2 the considered equation is expo-
nentially stable, provided

4bw(e2m/@ 4+ 1)

1.
(I — e /=) (d 1 u?)

(=

(3.3)

Forinstance takev = 1. Then (3.3) holds, provided

5(1 —e~4m)

b<24<
e 2m 41

(3.4)

Thetraditional freezing method can be applied if in-
stead of (3.2) we take into account that under consid-

eration
[A() — A(s

Soa(t) = bw|t| and according to Corollary 1.2 in this
case withw = 1 the stability condition is provided by

/
0

So (3.4) is considerably better than this condition.

This example shows that the application of Theo-
rem 1.1 to equations with matrices containing two and
more parameters requires simpler calculations than
the method suggested in [7] but Theorem 1.1, in con-
trast to [7], requires the point-wise Hurwitzness of
matrix A(t).

) < bwlt —

e tdt =b < 1.
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